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I. Motivation and Overall Goals

The current interest in the modeling and design of emerging technologies such as very low
observable vehicles, ground/foliage penetrating radars and phase sensitive components, imposes
requirements on the accuracy and performance of the computational tools far beyond the capa-
bilities of existing techniques. Furthermore, the need to accurately model the interaction of very
broad band signals with electrically large and geometrically complex objects, often including
regions of advanced materials, suggests that new approaches beyond integral equation based
approaches to electromagnetic modeling and design be sought.

As has been realized over the last few years, the widely used finite-difference time-domain
(FD-TD) method for the time-domain solution of Maxwells equations has a number of very
unfortunate properties. On one hand, the theoretical second order spatial and temporal accu-
racy requires the use of a significant number of grid points per characteristic wave length to
accurately resolve the wave propagation and reflection and refraction at interfaces. This again
translates into a very large number of degrees of freedom and makes the modeling of large scale
scattering and penetration problems prohibitive. Furthermore, the straightforward use of a sim-
ple Cartesian grid structure implies that material interfaces and metallic boundaries be forced
to align with the underlying grid structure, hence prohibiting the accurate representation of
curved interfaces/boundaries and reducing the accuracy of the scheme to first order. A final,
and often overlooked, problem is the inability of the FD-TD approach to enforce the correct
jump conditions of the electric and magnetic field components across material interfaces. As
can be shown through simple analysis, this reduces the accuracy of the scheme to less that first
order and may even result in nonconvergent behavior.

It is to resolve these critical, and crippling, issues that we during the last year have initiated
the development of a new generation of high-order/spectral schemes for the time-domain solution
. of Maxwells equations employing a truly unstructured grid volume representation.

It is well known that the key technique to overcome the numerical errors associated the
classical FT-TD approach is to use high-order/spectral accuracy methods, which allows for a
dramatic reduction of the number of grid points per characteristic wavelength without sacrificing
the overall accuracy, i.e., for a high-order scheme one can typically accurately model the wave
phenomena with 4-6 points per wavelength. Geometric flexibility, hence overcoming the problems
with representing curvilinear bodies and interfaces, is ensured by using a fully unstructured
body-conforming grid which also allows for enforcing the physically correct jump conditions on
the individual field components across material interfaces and at metallic boundaries.

The unstructured grid scheme is entirely local and information is only exchanged between
faces of elements, i.e., the formulation allows for very efficient parallel implementations, essential
to enable the modeling of large complex objects. Furthermore, the use of an standard unstruc-
tured grid allows for the tight integration with existing key elements of a design and analysis
loop such as grid generation technology, CAD systems and pre- and post-processing analysis
tools. This latter point is often underestimated but plays a key role if a transition to a larger.
user base is to be successful and has therefore been a guiding light throughout the development,
initial implementation and verification.

II. Current State of Development and Main Achievements

In the following we shall review the main accomplishments during the period of the project
as related to the continued development of high-order/spectral time-domain methods. We shall
overview the status of the development of structured grid spectral methods, the more recent
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Figure 1: Left: Typical multi-domain grid for the solution of the scattering by a missile. Right: RCS(8,0)
for a missile subject to axial illumination by a horizontally polarized plane wave. The reference solution,
marked by “+”, was obtained by a method-of-moments technique.

development of high-order/spectral methods on unstructured grids, the main results of the
continued efforts in the analysis of PML methods, as well as the adaptation of the boundary
variation methods to problems in diffractive optics. We shall conclude by discussing efforts
related to finite-difference time-domain methods and techniques to improve on the widely used

Yee scheme to enable correct treatment of interfaces and boundaries.

II.1 Structured Grid Multi-Domain High-Order/Spectral Methods

The straightforward application of spectral methods in several space dimensions requires
that the computational domain is a square (in two dimensions) or a cube (in three dimensions)
with the grid predefined by a tensorproduct of Gaussian points to assure the spectral accuracy.

In the structured grid multi-domain formulation these squares and cubes take the role of
the fundamental building blocks by which the computational domain is filled to enable a high-
order/spectral solution of Maxwells equations in a geometrically complex domain. Filling the
computational domain is done in a completely body-conforming way, representing curvilinear
material interfaces and metallic boundaries with an accuracy equal to that of the approximation.
The computations in these elements involve the approximations of equations obtained by means
of curvilinear transformations of Maxwells equations.

To connect the domains we exploit the hyperbolic nature of Maxwell equations along with
the uniquely defined outward pointing normal vectors at the surfaces of the curvilinear elements
to uniquely determine which information leaves and which enters the drmain. Continuity of
the characteristic variables is enforced strongly in a way entirely consistent with the physics
of the problem. For interfaces placed between two materials we enforce the electromagnetic
jump conditions to ensure correct behavior of the fields along such interfaces. This approach
is likewise employed at geometric singularities such as vertices and edges combined with very
weak filtering to ensure stability of the approximation.

Using these ideas, we have demonstrated the prospects of using high-order/spectral multi-
domain methods for the accurate and efficient solution of nontrivial problems in electromagnetics



Scatlenrg by 3 by eRcirc mtwe

Bistatic RCS, dBsm
|

N L L " : :
o 2 < L & 00 “® ‘40 g 80 o 30 60 90 120 150 180
Theta (dagre) Observation Angle

Figure 2: Numerical RCS result of scattering by a sphere (left) and a finite cylinder (right) of a 900M Hz
plane wave. Both bodies are composed of lossy di-electric materials with €, = 43.0, g = 1.0, and
o = 0.8Sm~!. The sphere has a radius of 0.1 meter, i.e., ka = 0.67, and the length of the cylinder is
0.67m. The dashed line corresponds to the Mie-series result (left) and a finite element solution (right)
respectively.

involving scattering by, and penetration into, géon;etrically complex two- and three-dimensional
bodies.

As an example of current capabilities, consider the problem of scattering from an axisymmet-
ric missile, assumed to be perfectly conducting. In Fig. 1 we illustrate a typical structured grid
for the computation, emphasizing the fully body conforming grid and the geometric flexibility
of the method. The validity of the results are confirmed by a direct comparison with a standard
- method-of-moments computations.

For the modeling of problems containing advanced materials, the development is currently
ongoing and much additional work is needed. For problems with piecewise homogeneous ma-
terials, both two and three-dimensional tests have been successfully completed, confirming the
accuracy and overall performance for scattering by spheres, cylinders, cubes etc.

As an example of the modeling of scattering by lossy materials we show in Fig. 2 the RCS
computed using the three-dimensional framework for monochromatic scattering by a very dense
sphere and a very dense cylinder with the latter being compared with results obtained using
a very highly resolved finite element approach. The parameters of the materials are chosen to
assemble those of human tissue.

Both the two and the three dimensional codes exploit the use of Perfectly Matched Layers
(PML) to terminate the computational domains and specially designed PML methods for high-
order methods have been implemented and thoroughly tested.

To enable the computational modeling of elecirically large problems involving advanced
materials, the potential for efficient implementations is critical. The existing codes have all been
implemented using MPI to support fully parallei, distributed memory execution at a number of
platforms, showing superior parallel performance

These results clearly establish that the recently developed two- and three-dimensional struc-
tured grid high-order/spectral multi-domain schemes are geometrically flexible, capable of han-
dling real materials and allow for efficient implementations to enable the modeling of large and
complex realistic configurations.
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I1.2 Unstructured Grid Multi-Domain High-Order/Spectral Methods

A concentrated effort has recently been initiated to develop methods for solving the time
domain Maxwells equations in complex geometries and media using an fully unstructured grid.
The USEMe code (Unstructured Sprectral Element Method) is the resulting implementation
of a numerical scheme which employs nodal high-order/spectral multi-domain methods. Each
component of the code has been carefully designed with efficiency, accuracy, flexibility, and
robustness in mind.

The standard geometric building block by which the computational domain is gridded in
USEMe is the triangular element in 2D, and the tetrahedral element in 3D. This allows for the
use of standard finite element or finite volume type meshes using these elements to describe
arbitrarily complex domains, hence overcoming one of the main concerns associated with the
structured grid methods. The use of triangles and tetrahedrons remains of the most important
design principles of the method as it enables a tight integration with industry standard mesh
generators.

USEMe is based on penalty/discontinuous Galerkin(DGM) type scheme, which is a particular
form of a penalty scheme that guarantees elemental conservation and global stability. Neighbor-
ing elements are patched together through the use of penalty terms to account for jumps across
their shared boundary. Thic formulation has the advantage that it allows material coefficients
to vary discontinuously at the interface between two elements, while still preserving high order
accuracy. Additionally chis allows for efficient communication in parallel computations.

A thorough convergence analysis for the proposed framework has been completed, putting the
expectations on firm ground and verifying that one can indeed expect the properties speculated
during the initial developments and essential as a motivation for the chosen approach. The
analysis also includes bounds on the divergence error, confirming that the computed results

. remain divergence free to the order of the scheme away from singular points.

A general two-dimensional unstructured grid code, based on the use of curvilinear triangles,

has been implemented and tested extensively, including by third party users. The code is flexible,
versatile, and robust, allowing for the modeling a very general two-dimensional (TE and TM)
time-domain scattering, penetration and radiation problems involving di-electric and magnetic
materials, possibly of a lossy nature.

The discretization provides a fully body-conforming high order representation of a mate-
rial scatterer, hence overcoming the staircasing phenomena evident in common finite difference
schemes. In Figure 3 we illustrate some elements which have an edge on the boundary. Their
nodes have been mapped to the boundary and the internal nodes blended linearly from the
boundary. The full triangulated region is likewise illustrated.

As an example of the expected accuracy, we compute plane wave scattering from a PEC
cylinder with the non-uniform near-field mesh illustrated in Fig. 3. This is an excellent test
case as it allows us to decermine the performance of the PEC boundary conditions, PML bound-
ary truncation, RCS cal :uiation, curvilinear body representation and high order approximation
techniques. Comparing the computed z component of the electric field with the exact solution
over the interior domain, Table 1 confirms exponential convergence. Numerous other results for
scattering and penetration into simple simple homogeneous scatters have shown similar accu-
racy. Other more complex problems involving materials and singular solution behavior display
a very similar accuracy and overall performance.

Serial as well as fully parallel implementations has been completed and various tools such
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Figure 3: Left: Seventh order boundary fitted triangular elements. Right: Full triangulated region for
two-dimensional scattering with PML.

Expansion | Ly, error
8 3.2E-02
10 2.1E-03
12 6.2E-04

Table 1: L., error over the interior domain as function of expansion order for scattering of a TM plane

" wave from a PEC cylinder (ka = 7n).

as near-to-far-field transformations and highly efficient absorbing layer techniques have been
implemented and tested. The code has been interfaced with a public domain grid-generator to
enable simple and user-friendly grid-generation.

The development of a general three-dimensional framework is, by the sheer complexity of the
problem, a daunting task and it remains a work in progress. A general, three-dimensional version
of the scheme has been implemented and initial tests has been conducted, verifying the expected
accuracy and overall performance. So far, these test cases has been limited to problems involving
purely metallic scatters, although this remains less of a concern as pure metallic scattering often
provides the most challenging test cases.

_ As a simple test of the current capability of the framework we show in Fig. 4 the bistatic
s for a ka = 10 PEC sphere as computed using the unstructured framework and compared
with the analytic Mie-series. As expected we find excellent agreement.

As a more eye-catching, and preliminary, result Figure 5 demonstrates that the code is
currently capable of simulating electromagnetic plane wave scattering from a complex F15 type
geometry. Even though this is a preliminary result, the code is capable of representing much more
complex media and also more complex and higher frequency signals than this monochromatic
example. This result was obtained by running on a single processor workstation using third
order accurate elements. Higher resolution calculations are being performed in parallel on an
IBM SP.
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Figure 4: Bistatic RCS for ka = 10 as computed using the unstructured grid framework with an 6’th
order basis.

A fully parallel version, implemented in MPI and Fortran/C, has been tested, showing ex-
cellent parallel speed up which remains a crucial property to enable the modeling of large scale
problems of realistic complexity. The parallel performance is illustrated in Table 2, confirming
that the code attains up to 95 percent parallel efficiency as the number of processors is increased.

Expansion | Total Degrees # of processors

Order of Freedom 2 4 8 | 16
3 7,380,000 56 34|18 ] .95
4 14,760,000 ¥* 174139123
5 25,830,000 KRk 78143

Table 2: Wall clock time per Runge Kutta integration stage. Timings taken on an IBM SP2 at CASCV,
Brown University. (** implies that there was not enough memory local to the nodes)

The code has been interfaced with Gambit/Fluent grid-generator to allow for a user-friendly
approach to the daunting of three-dimensional grid-generation. This interfacing has been accom-
plished through a pre-processing module that enables the use of a standard finite-element /finite-
volume grid in a fully body-conforming high-order accuracy framework. It is worth emphasizing
that there is nothing special about the chosen grid-generator and any finite-element/finite-
volume grid generator can be used as a frontend to USEMe, provided only that a simply format-
interface be implemented.

I1.3 Absorbing Boundary Conditions for Time-Domain CEM

One of the central issues in time domain CEM is the development of techniques for the
truncation of the infinite computational domain in such a way that outgoing waves leave the do-
main without reflections which could otherwise reenter and eventually falsify the computational
results.



Figure 5: Nose to tail component of the reflected magnetic field from an incident plane wave.

In 1994 Berenger introduced a new methodology for designing such schemes by the introduc-
tion of an absorbing layer, to which he attributed material properties that modify the vacuum-
equations so that the field strength decays. In his original paper these material properties were
based on a mathematical construct, involving splitting the transverse magnetic field.

We have previously conducted a detailed mathematical analysis of the PML formulation
applied to the two dimensional transverse-electric mode (TE) of Maxwell’s equations. The
conclusions of this analysis hold also for all other forms of the equations. We were interested
in the well-posedness of the PML formulation, and therefore investigated the pure-initial value
problem. The main conclusion is that the PML split-form of Maxwell’s equations is only weakly
well-posed and therefore its solution could diverge under small perturbations. This theoretical
result has some far reaching conclusions. First, it indicates the the split field PML will have
problems as the required number of points in the PML layer will increase with time. Moreover,
since all physical system describing reality must be strongly well posed, the PML can not
represent any physical layer.

In the case of the transverse electric (TE) case or transverse magnetic (TM) these consider-
ations lead to a set of 4 p.d.e.’s, different from those given by Berenger.

The dimensionless form of the equations based on the Lorentz-material model, is:
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where J is a polarization current.

We showed that the set of 4 p.d.e.’s can be reduced to a set of 3 inhomogeneous Maxwell
equations augmented by a temporal O.D.E. This means that the original set of equations in the
layer is strongly well posed. We then provide a closed form solution for plane -waves traveling
in the absorbing layer, under the assumption of periodicity in y, for 2 cases — the semi-infinite
layer and the finite layer. The analysis confirmed that the infinite layer is a true PML but also
exposed that the finite width Lorentz material PML may exhibit locally growing solutions before
they finally decay.

The method of deriving absorbing layers from physical considerations has limitations. In
particular the absorbing properties of the layers can not be controlled. We have developed a
mathematical methodology for the construction of PMLs. This methodology is more flexible
than the physically motivated one and it allows control of the decay properties of the solution
in the absorbing layer. One of the possible sets is given by
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. The solution vector now is given by
E, (_{i
Ey | _ “ "“‘*’) giw(t—az—Py) ,~ Js a(m)dn
H |~ 1
P iBo?
w

The solution here is bounded by a function that does not grow in any direction

The success of the PML method is crucial in applying high order accuracy methods to the
simulations of Maxwell equations. After all, there is no point in achieving high accuracy in the
computational domain if the reflections introduce large errors. The PML methodology minimize
the numerical reflections.

However it was found that all the known PML allow linear (and non-physical) growth in time
when simulating pulses. It seems that the growth is triggered when the pulse leaves the domain
and the solution vector approach constant in space. A simple analysis explains the situation.
Consider the physically based PML, and assume that the spatial derivative vanish, then the
equations for E, and J decouple and they display a linear growth in time. It is easy, based on
this analysis, to find a "cure” for this problem. However it is not clear if the corrected method is
still a PML. This problem remains open. The numerical experiments indicate that the corrected
.physically motivated, PML maintains its absorption properties even with the time stabilizing
term. A better analysis and more experiments are needed to have the full understanding of this
very important question.




I1.4 Boundary Variation Techniques for Waveguide Holograms

It has recently been established by Bruno and Reitich that solutions to electromagnetic
diffraction by a periodic structure depend analytically on the variations of the interface. In other
words, diffraction from a periodic grating can be determined from knowledge of reflection and
refraction at a plane interface and the diffraction problem be solved by analytic continuation.
Using this result, a high-order perturbation technique was developed for finite-size perturba-
tions and successfully used it in modeling diffraction by two and three-dimensional metallic and
transmission gratings.

To utilize and further generalize on these results we have initiated work on the formulation
and implementation of boundary variation techniques for the analysis and modeling of waveguide
grating couplers. These are diffractive optical devices in which a guided wave in a thin-film
waveguide is coupled to free-space radiation through a surface relief. These problems are vastly
different from what was previously considered. Among other things, the illuminating wave
is a guided wave with evanescent tails. Furthermore the diffraction process includes multiple
refraction/reflection processes. Finally, we have extended the analysis to structures of finite
extent.

M P (-107%)
2 1.208589
4 1.220834
6 1.220247
8 1220243
10 1.220243

Table 3: Power in the -1st diffraction order for different number of terms [M,M] in the Padé
approximation to the power series expansion.

As a first example of the performance of the boundary variation scheme, consider a waveguide
structure consisting of a core layer with refractive index n = 1.45 and thickness d; = 0.3,
sandwiched between two cladding layers of refractive index n = 1.4. The top cladding layer has
a finite thickness of do = 1 and above this layer is air with n = 1. For the fundamental TE
mode this geometry yields an effective index of 1.4213.

We consider a cosine surface relief
2
f5(z) = Acos (K”z> (1)

Let us first study the céonvergence of the scheme. As we do not have an analytic solution to
compare with, we are unable to compute the error. Rather, we look at the power coupled to
the -1st diffraction order as we increase the number of terms in the Padé approximation to the
Tavlor series expansion of the global solution. Table 3 confirms the convergence in the case of
A = 0.1 as the number of terms in the power series expansion increases.

Let us now demonstrate the use of the proposed boundary variation method to study aperi-
odic surface-relief gratings couplers of finite length. Clearly, as we use a periodic Rayleigh series
expansion for the radiated fields, the grating is implicitly forced to be periodic. However, as
we shall demonstrate, choosing a sufficiently large total length of the computational domain as
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compared with the length of the finite surface relief, the results becomes consistent with those
obtained using a method dealing with truly finite gratings.

For the FGC surface relief we use the generic profile

zZ— 2

w

2
f5(2) = Aexp [— ( ) } cos [2r (a0 + a1 ( — 20)) ( — 20)] @)

where A is the amplitude, w is the width of the exponentially truncated relief, zj is the center of
the relief, ag = 1/A for the unchirped relief, and a, is the chirp parameter. We consider, as an
example, the parameters A = 0.25, ap = 1.4213, a; = 0.005, and w = 3 and show in Fig. 6 that
there is an excellent agreement between the farfield patterns of the results obtained even for this
relatively deep surface relief grating and those computed with a rigorous spectral multi-domain
scheme solving Maxwells equations directions and to very high order.
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Figure 6: Left: Farfield radiation patterns for FGC computed using the boundary variation
method (dashed) and a spectral multi-domain method (solid). Right: Focusing beam emanating
from grating coupler at x=0.

A M f time
BV BV SC BV SC
0.1 7 471 47.0 46s 30h
‘o 0.2 13 46.3 46.2 390s 64h
0.3 17 452 45.1 1081s 126h

Table 4: Key figures for spectral collocation (SC) and the proposed boundary variation (BV)
computations. A is the amplitude of the surface relief. An [M,M] Padé approximant is used
for the BV method. fis the focal length normalized with the free-space wavelength, and time

reflects the total computation time.
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We find excellent correspondence in the farfield maintained in the nearfield even though
the intensity is slightly lower for the BV method for all amplitudes, which may be due to not
accounting for multiple reflections. Looking at the computation time in Table 4, it is evident
that the use of the approximate boundary variation method certainly pays off: While we find
excellent agreement with the rigorous spectral collocation method, we find a reduction in the
computation time exceeding a factor of 2000 is achievable, a fact which calls for the future use
of the method as the forward solver in an optimization scheme.

I1.5 Embedded Interface Finite-Difference Methods

While it is well known 4th order methods perform significantly better than 2nd order methods
when solving wave problems, it is also well known that stable 4th order finite difference schemes
can be constructed on equidistant Cartesian grids even as one approaches the boundary and
one-sided closures are required. A central difficulty, however, is introduced in the need to treat
geometrically complex objects. Rather than adapting a multi-element formulation we wish to
overcome this complication while maintaining a very simple Cartesian grid and embed the whole
computational problem into the grid. The success of such embedding techniques hinges critically
on the formulation of the finite difference stencils in a way that allows for the including the
position of the embedded objects as well as the boundary conditions of the field on the surface
of the objects.

Attempts to construct stable and well behaved finite difference schemes that allows one to
use a simple Cartesian grid for solving partial differential equation in geometrically complex
settings is not new. In particular for solving the incompressible Navier-Stokes equations can
one find a wealth of methods which all seem to have their origin in the immersed boundary
method. For problems involving transparent boundaries, as is generally the case for problems in
~ electromagnetics, it is necessary to seek an approach in which one directly imposes the correct
interface conditions on the solution across the interface. An approach used extensively in the-
context of electromagnetics is to simply assign averaged material properties to grid points at
the material interface, although we have shown this approach yields 1st order accuracy at best.

In very recent work, we have proposed a novel 2nd order finite difference based approach for
solving Maxwells equations but directly applicable to wave problems in general. Contrary to
previously proposed methods, it is equally applicable to the scalar and the system case, the bulk
of the work involved in treating the material interfaces is performed in a preprocessing phase,
and the scheme handles generally curved internal interfaces as well as fully reflecting boundaries
with equal ease and in a uniform way.

Although the thorough theoretical developments are completed for the one-dimensional prob-
lem only, the approach generalizes to several dimensions without complications. Consider, as
an example, the electromagnetic scattering of a plane wave impinging on a two-dimensional
di-electric cylinder. In Fig. 7 is shown the temporal behavior of the global error as well as a
resolution study at a specific time. We see, as expected, that incorrect staircased treatment of
boundaries and their position severely limits the accuracy of the simple Yee scheme. Contrary
to this, the new scheme is truly second order and typically yields at least an order of magnitude
improvement in accuracy over the Yee scheme for the same resolution and, thus, the same com-
putational work. In other words, one can improve the accuracy at little or no cost or one can
obtain results of a comparable accurate accuracy at dramatically reduced computational cost.

Current efforts include the continued verification of the two-dimensional framework for both
polarizations as well as the initial phase of the implementation and testing of a general three-
dimensional framework.
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Figure 7: In a) we show the temporal dependence of the global L? error of E for different resolu-
tion in terms of the free-space wavelength for the staircased and non staircased approximation.
In b) is shown the global error at t=25, illustrating the expected convergence rate.

III. Papers Citing Support from Grant
II1.1 Appeared or Accepted

e A. Ditkowski, K. H. Dridi, and J. S. Hesthaven, 1999, Convergent Cartesian Grid Methods
for Mazwells Equations in Complex Geometries , J. Comput. Phys. - to appear.

e K. H. Dridi, J. S. Hesthaven, and A. Ditkowski, 1999, Staircase Free Finite-Difference
Time-Domain Formulation for General Materials in Complex Geometries, IEEE Trans.
Antennas Propaga. - to appear.

D. Gottlieb and J. S. Hesthaven, 2000, Spectral Methods for Hyperbolic Problems, J. Comput.
Appl. Math. - to appear.

e T. Warburton, L. Pavarino and J.S. Hesthaven, 2000 A Pseudo-Spectral Scheme for the In-
compressible Navier-Stokes Equations Using Nodal Elements, J. Comput. Phys. 163(2000),
pp. 1-21.

V. Zharnitsky, E. Grenier, S. K. Turitsyn, C. K. R. T. Jones, and J. S. Hesthaven, 2000,
Ground States of Dispersion Managed NLS, Phys. Rev. E. 62(5), pp. 7358-7364.

e J. S. Hesthaven and C. H. Teng, 2000, Stable Spectral Methods on Tetrahedral Elements,
SIAM J. Sci. Comput. 21(6), pp. 2352-2380.

e P. G. Dinesen and J. S. Hesthaven, 2000, A Fast and Accurate Boundary Variation Method
for Diffrative Gratings, J. Opt. Soc. Am. A 17(9), pp. 1565-1572.

e J. S. Hesthaven, 2000, Spectral Penalty Methods, Appl. Numer. Math. 33(1-4), pp. 23-41.

e B. Yang and J. S. Hesthaven, 2000, Multidomain Pseudospectral Computation of Mazwell’s
Equations in 8-D General Curvilinear Coordinates, Appl. Numer. Math. 33(1-4), pp. 281-
289.

13




P. G. Dinesen, J. S. Hesthaven and J. P. Lynov, 2000, A Pseudospectral Collocation Time-
Domain Method for Diffractive Optics, Appl. Numer. Math. 33(1-4), pp. 199-206.

J. S. Hesthaven, P. G. Dinesen and J. P. Lynov, 1999, Spectral Collocation Time-Domain
Modeling of Diffractive Optical Elements, J. Comput. Phys. 155(1), pp. 287-306.

S. Abarbanel, D. Gottlieb and J. S. Hesthaven, 1999, Wellposed Perfectly Matched Layers
for Advective Acoustics, J. Comput. Phys 154(2), pp. 266-283.

P. G. Dinesen, J. S. Hesthaven, J. P. Lynov and L. Lading, 1999, Pseudospectral Method for
the Analysis of Diffractive Optical Elements, J. Opt. Soc. Am. A 16(5), pp. 1124-1130.

B. Yang and J. S. Hesthaven, 1999, A Pseudospectral Method for Time-Domain Computation
of Electromagnetic Scattering by Bodies of Revolution, IEEE Trans. Antennas Propaga.
47(1), pp. 132-141.

P. G. Dinesen and J. S. Hesthaven, 2000, Analysis of Grating Couplers Using the Boundary
Variation Method. In Technical digest. Diffractive optics and micro-optics meeting and table
top exhibit, Quebec City (CA). Optical Society of America, OSA Technical Digest series,
pp. 84-86.

P. G. Dinesen and J. S. Hesthaven, 2000, Rigorous 3-D Analysis of Focusing Grating Couplers
Using a Spectral Collocation Method. In Technical digest. Diffractive optics and micro-
optics meeting and table top exhibit, Quebec City (CA). Optical Society of America, OSA
Technical Digest series, pp. 81-83.

P. G. Dinesen, J. S. Hesthaven,and J. P. Lynov, 2000, Rigorous Analysis of Focusing Grat-
ing Couplers Using a Time-Domain Spectral Collocation Method. In Diffractive/holographic
technologies and spatial light modulators 7. Optoelectronics 2000, San Jose, CA. Cindrich, L;
Lee, S.H.; Sutherland, R.L. (eds.), (International Society for Optical Engineering, Belling-
ham, WA, 2000), Proceedings of SPIE 3951, pp. 11-19.

P. G. Dinesen, J. S. Hesthaven,and J. P. Lynov, 2000, Rigorous Three-Dimensional Analysis
of Surface-Relief Gratings Using a Spectral Collocation Method. In Diffractive/holographic
technologies and spatial light modulators 7. Optoelectronics 2000, San Jose, CA. Cindrich, L;
Lee, S.H.; Sutherland, R.L. (eds.), (International Society for Optical Engineering, Belling-
ham, WA, 2000), Proceedings of SPIE 3951, pp. 2-10.

K. Dridi and J.S. Hesthaven, 1999, N-space Staircase-Free Finite-Difference Time-Domain
Formulation for Arbitrary Material Distributions: Numerical Investigations on a Focusing
Grating Coupler in Dielectric Waveguides. Proc. of Integrated Photonics Research IPR 99,
Santa Barbara, CA. pp. 250-252.

P. G. Dinesen, L. Lading, J. P. Lynov and J. S. Hesthaven, 1998, Waveguides and Diffractive
Elements for Non-Contact Sensors: Analysis rroc. of Diffractive Optics and Micro-Optics,
Hawaii. pp. 209-211.

J. S. Hesthaven, P. G. Dinesen and J. P. Lynov, 1998, Pseudospectral Time-Domain Modeling
of Diffractive Optical Elements. Proc. of The 14'th Annual Review of Progress in Applied
Computational Electromagnetics, Monterey, CA. pp. 858-865.

14




B. Yang, D. Gottlieb and J. S. Hesthaven, 1997, On the Use of PML ABC'’s in Spectral Time-
Domain Simulations of Electromagnetic Scattering. Proc. of The 13'th Annual Review of
Progress in Applied Computational Electromagnetics, Monterey, CA. pp. 926-933.

D. Gottlieb and P. Fischer, On the optimal number of subdomains for hyperbolic problems
on parallel computers, Int. J. of Supercomp. Appl. and High Perf. Comp. 11(1997),
pp- 65-76.

D. Gottlieb and S. Abarbanel, A Mathematical Analysis of PML Methods. J. Comput. Phys.
134(1997), pp.357-363.

M. Carpenter, J. Norstrom, adn D. Gottlieb, 4 Stable and Conservative Interface Treatment
of Arbitrary Spatial Accuracy, J. Comput. Phys. 148(1999), pp.341-365.

S. Abarbanel, D. Gottlieb and E. Turkel, Analysis of the Error for Approzimations to
Systems of Hyperbolic Equations, J. Comput. Phys. 151(1999), pp. 997-1007.

II1.2 Submitted
e P. G. Dinesen and J. S. Fcsthaven, 2001, A Fast and Accurate Boundary Variation Method

for Diffrative Gratings II. The Three-Dimensional Vectorial Case, J. Opt. Soc. Am. A -
submitted.

J. S. Hesthaven and T. Warburton, 2001, High-Order/Spectral Methods on Unstructured
Grids. I. Time-Domain Solution of Mazwell’s Equations, J. Comput. Phys. - submitted.

C. H. Teng, A. Ditkowski, and J. S. Hesthaven, 2000, Modeling Dielectric Interfaces in the
FDTD-Method: A Comparative Study, IEEE. Trans. Antennas Propaga. - submitted.

P. Dutta, T.C. Warburton, and A. Beskok, 2000, Analysis of Electroosmotically Driven
Micro-Channel Flows, J. of Fluid Mech. — submitted.

A. Beskok and T.C. Warburton, 2000, An Unstructured H/P Finite Element Scheme for
Fluid Flow and Heat Transfer in Moving Domains, J. Comput. Phys. — submitted.

II1.3 Theses Completed

e C. H. Teng, Numerical Methods for Wave Problems in Complex Geometries, PhD thesis.
Division of Applied Mathematics, Brown University, 1998-2001.

e B. Yang, Spectral Methods and Absorbing Boundary Conditions for Mazwell’s Equations,
PhD thesis. Division of Applied Mathematics, Brown University, 1995-1998.

15




